Simple Literary Analytics on Presidential Candidates in the First 2016 Presidential Debate

The first presidential debate 2016 was held on September 26, 2016 in Hofstra University in New York. An interesting analysis will be the literacy level demonstrated by the two candidates using Flesch readability ease and Flesch-Kincaid grade level, demonstrated in my previous blog entry and my Github: stephenhky/PyReadability.

First, we need to get the transcript of the debate, which can be found in an article in New York Times. Copy and paste the text into a file called first_debate_transcript.txt. Then we want to extract out speech of each person. To do this, store the following Python code in first_debate_segment.py.

# Trump and Clinton 1st debate on Sept 26, 2016

from nltk import word_tokenize
from collections import defaultdict
import re

# adopted from http://stackoverflow.com/questions/21948019/python-untokenize-a-sentence
def untokenize(words):
    """
    Untokenizing a text undoes the tokenizing operation, restoring
    punctuation and spaces to the places that people expect them to be.
    Ideally, `untokenize(tokenize(text))` should be identical to `text`,
    except for line breaks.
    """
    text = ' '.join(words)
    step1 = text.replace("`` ", '"').replace(" ''", '"').replace('. . .',  '...')
    step2 = step1.replace(" ( ", " (").replace(" ) ", ") ")
    step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2)
    step4 = re.sub(r' ([.,:;?!%]+)$', r"\1", step3)
    step5 = step4.replace(" '", "'").replace(" n't", "n't").replace(
         "can not", "cannot")
    step6 = step5.replace(" ` ", " '")
    return step6.strip()

ignored_phrases = ['(APPLAUSE)', '(CROSSTALK)']
persons = ['TRUMP', 'CLINTON', 'HOLT']
fin = open('first_debate_transcript.txt', 'rb')
lines = fin.readlines()
fin.close()

lines = filter(lambda s: len(s)>0, map(lambda s: s.strip(), lines))
speeches = defaultdict(lambda : '')
person = None

for line in lines:
    tokens = word_tokenize(line.strip())
    ignore_colon = False
    added_tokens = []
    for token in tokens:
        if token in ignored_phrases:
            pass
        elif token in persons:
            person = token
            ignore_colon = True
        elif token == ':':
            ignore_colon = False
        else:
            added_tokens += [token]
            speeches[person] += ' ' + untokenize(added_tokens)

for person in persons:
    fout = open('speeches_'+person+'.txt', 'wb')
    fout.write(speeches[person])
    fout.close()

There is an untokenize function adapted from a code in StackOverflow. This segmented the transcript into the individual speech of Lester Holt (the host of the debate), Donald Trump (GOP presidential candidate), and Hillary Clinton (DNC presidential candidate) in separate files. Then, on UNIX or Linux command line, run score_readability.py on each person’s script, by, for example, for Holt’s speech,

python score_readability.py speeches_HOLT.txt --utf8

Beware that it is encoded in UTF-8. For Lester Holt, we have

Word count = 1935
Sentence count = 157
Syllable count = 2732
Flesch readability ease = 74.8797052289
Flesch-Kincaid grade level = 5.87694629602

For Donald Trump,

Word count = 8184
Sentence count = 693
Syllable count = 10665
Flesch readability ease = 84.6016324536
Flesch-Kincaid grade level = 4.3929136992

And for Hillary Clinton,

Word count = 6179
Sentence count = 389
Syllable count = 8395
Flesch readability ease = 75.771973015
Flesch-Kincaid grade level = 6.63676650035

Apparently, compared to Donald Trump, Hillary Clinton has a higher literary level, but her speech is less easy to understand.

Recalling from my previous entry, for Shakespeare’s MacBeth, the Flesch readability ease is 112.278048591, and Flesch-Kincard grade level 0.657934056288; for King James Version Bible (KJV), they are 79.6417489428 and 9.0085275366 respectively.

This is just a simple text analytics. However, the content is not analyzed here. Augustine of Hippo wrote in his Book IV of On Christian Teaching (Latin: De doctrina christiana) about rhetoric and eloquence:

“… wisdom without eloquence is of little value to the society… eloquence without wisdom is… a great nuisance, and never beneficial.” — Augustine of Hippo, Book IV of On Christian Teaching

694940094001_5142607252001_highlights-from-the-first-presidential-debate

  • Flesch-Kincaid readability measure. [Wikipedia]
  • Kwan-Yuet Ho, “Flesch-Kincaid Readability Measure,” Everything About Data Analytics, WordPress (2016). [WordPress]
  • Github Repository: PyReadability. [Github]
  • “Transcript of the First Debate,” New York Times, September 27, 2016. [NYTimes]
  • “Python Untokenize a Sentence”, StackOverflow. [StackOverflow]
  • Saint Augustine. On Christian Teaching. Translated by R. P. H. Green. Oxford World’s Classics. New York, NY: Oxford University Press. 1997. [Amazon]
  • Kwan-Yuet Ho, “Reviewing St. Augustine’s ‘On Christian Teaching’, Book IV,” reformator: living perspectivally, WordPress (2016). [WordPress]
  • Annie Holmquist, “How Last Night’s Debate Proved the Dumbing Down of America is Real,” Intellectual Takeout (September 27, 2016). [IntellectualTakeout]

Feature diagram and figure adapted from FOX News.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s