New Family of Regularization Methods

In their paper, Kawaguchi, Kaelbling, and Bengio explored the theory of why generalization in deep learning is so good. Based on their theoretical insights, they proposed a new regularization method, called Directly Approximately Regularizing Complexity (DARC), in addition to commonly used Lp-regularization and dropout methods.

This paper explains why deep learning can generalize well, despite large capacity and possible algorithmic instability, nonrobustness, and sharp minima, effectively addressing an open problem in the literature. Based on our theoretical insight, this paper also proposes a family of new regularization methods. Its simplest member was empirically shown to improve base models and achieve state-of-the-art performance on MNIST and CIFAR-10 benchmarks. Moreover, this paper presents both data-dependent and data-independent generalization guarantees with improved convergence rates. Our results suggest several new open areas of research.

Screen Shot 2017-10-24 at 11.41.41 PM

  • Kenji Kawaguchi, Leslie Pack Kaelbling, Yoshua Bengio, “Generalization in Deep Learning,” arXiv:1710.05468 (2017). [arXiv]

One thought on “New Family of Regularization Methods

Add yours

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: