Essential Python Packages

Almost three years ago, I wrote a blog entry titled Useful Python Packages, which listed the essential packages that I deemed important. How has the list been changed over the past three years?

First of all, three years ago, most people were still writing Python 2.7. But now there is a trend to switch to Python 3. I admitted that I still have not started the switch yet, but in the short term, I will have no choice and I will.

What are some of the essential packages?
Numerical Packages

  • numpy: numerical Python, containing most basic numerical routines such as matrix manipulation, linear algebra, random sampling, numerical integration etc. There is a built-in wrapper for Fortran as well. Actually, numpy is so important that some Linux system includes it with Python.
  • scipy: scientific Python, containing some functions useful for scientific computing, such as sparse matrices, numerical differential equations, advanced linear algebra, special functions etc.
  • networkx: package that handles various types of networks
  • PuLP: linear programming
  • cvxopt: convex optimization

Data Visualization

  • matplotlib: basic plotting.
  • ggplot2: the ggplot2 counterpart in Python for producing quality publication plots.

Data Manipulation

  • pandas: data manipulation, working with data frames in Python, and save/load of various formats such as CSV and Excel

Machine Learning

  • scikit-learn: machine-learning library in Python, containing classes and functions for supervised and unsupervised learning

Probabilistic Programming

  • PyMC: Metropolis-Hasting algorithm
  • Edward: deep probabilistic programing

Deep Learning Frameworks

  • TensorFlow: because of Google’s marketing effort, TensorFlow is now the industrial standard for building deep learning networks, with rich source of mathematical functions, esp. for neural network cells, with GPU capability
  • Keras: containing routines of high-level layers for deep learning neural networks, with TensorFlow, Theano, or CNTK as the backbone
  • PyTorch: a rivalry against TensorFlow

Natural Language Processing

  • nltk: natural language processing toolkit for Python, containing bag-of-words model, tokenizer, stemmers, chunker, lemmatizers, part-of-speech taggers etc.
  • gensim: a useful natural language processing package useful for topic modeling, word-embedding, latent semantic indexing etc., running in a fast fashion
  • shorttext: text mining package good for handling short sentences, that provide high-level routines for training neural network classifiers, or generating feature represented by topic models or autoencodings.
  • spacy: industrial standard for natural language processing common tools

GUI

I can probably list more, but I think I covered most of them. If you do not find something useful, it is probably time for you to write a brand new package.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: