Summarizing Text Summarization

There are many tasks in natural language processing that are challenging. This blog entry is on text summarization, which briefly summarizes the survey article on this topic. (arXiv:1707.02268) The authors of the article defined the task to be

Automatic text summarization is the task of producing a concise and fluent summary while preserving key information content and overall meaning.

There are basically two approaches to this task:

  • extractive summarization: identifying important sections of the text, and extracting them; and
  • abstractive summarization: producing summary text in a new way.

Most algorithmic methods developed are of the extractive type, while most human writers summarize using abstractive approach. There are many methods in extractive approach, such as identifying given keywords, identifying sentences similar to the title, or wrangling the text at the beginning of the documents.

How do we instruct the machines to perform extractive summarization? The authors mentioned about two representations: topic and indicator. In topic representations, frequencies, tf-idf, latent semantic indexing (LSI), or topic models (such as latent Dirichlet allocation, LDA) are used. However, simply extracting these sentences out with these algorithms may not generate a readable summary. Employment of knowledge bases or considering contexts (from web search, e-mail conversation threads, scientific articles, author styles etc.) are useful.

In indicator representation, the authors mentioned the graph methods, inspired by PageRank. (see this) “Sentences form vertices of the graph and edges between the sentences indicate how similar the two sentences are.” And the key sentences are identified with ranking algorithms. Of course, machine learning methods can be used too.

Evaluation on the performance on text summarization is difficult. Human evaluation is unavoidable, but with manual approaches, some statistics can be calculated, such as ROUGE.

  • Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, Krys Kochut, “Text Summarization Techniques: A Brief Survey,” arXiv:1707.02268 (2017). [arXiv]

One thought on “Summarizing Text Summarization

Add yours

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Create a free website or blog at

Up ↑

%d bloggers like this: