Essential Python Packages

Almost three years ago, I wrote a blog entry titled Useful Python Packages, which listed the essential packages that I deemed important. How has the list been changed over the past three years?

First of all, three years ago, most people were still writing Python 2.7. But now there is a trend to switch to Python 3. I admitted that I still have not started the switch yet, but in the short term, I will have no choice and I will.

What are some of the essential packages?
Numerical Packages

  • numpy: numerical Python, containing most basic numerical routines such as matrix manipulation, linear algebra, random sampling, numerical integration etc. There is a built-in wrapper for Fortran as well. Actually, numpy is so important that some Linux system includes it with Python.
  • scipy: scientific Python, containing some functions useful for scientific computing, such as sparse matrices, numerical differential equations, advanced linear algebra, special functions etc.
  • networkx: package that handles various types of networks
  • PuLP: linear programming
  • cvxopt: convex optimization

Data Visualization

  • matplotlib: basic plotting.
  • ggplot2: the ggplot2 counterpart in Python for producing quality publication plots.

Data Manipulation

  • pandas: data manipulation, working with data frames in Python, and save/load of various formats such as CSV and Excel

Machine Learning

  • scikit-learn: machine-learning library in Python, containing classes and functions for supervised and unsupervised learning

Probabilistic Programming

  • PyMC: Metropolis-Hasting algorithm
  • Edward: deep probabilistic programing

Deep Learning Frameworks

  • TensorFlow: because of Google’s marketing effort, TensorFlow is now the industrial standard for building deep learning networks, with rich source of mathematical functions, esp. for neural network cells, with GPU capability
  • Keras: containing routines of high-level layers for deep learning neural networks, with TensorFlow, Theano, or CNTK as the backbone
  • PyTorch: a rivalry against TensorFlow

Natural Language Processing

  • nltk: natural language processing toolkit for Python, containing bag-of-words model, tokenizer, stemmers, chunker, lemmatizers, part-of-speech taggers etc.
  • gensim: a useful natural language processing package useful for topic modeling, word-embedding, latent semantic indexing etc., running in a fast fashion
  • shorttext: text mining package good for handling short sentences, that provide high-level routines for training neural network classifiers, or generating feature represented by topic models or autoencodings.
  • spacy: industrial standard for natural language processing common tools

GUI

I can probably list more, but I think I covered most of them. If you do not find something useful, it is probably time for you to write a brand new package.

Short Text Mining using Advanced Keras Layers and Maxent: shorttext 0.4.1

On 07/28/2017, shorttext published its release 0.4.1, with a few important updates. To install it, type the following in the OS X / Linux command line:

>>> pip install -U shorttext

The documentation in PythonHosted.org has been abandoned. It has been migrated to readthedocs.org. (URL: http://shorttext.readthedocs.io/ or http:// shorttext.rtfd.io)

Exploiting the Word-Embedding Layer

This update is mainly due to an important update in gensim, motivated by earlier shorttext‘s effort in integrating scikit-learn and keras. And gensim also provides a keras layer, on the same footing as other neural networks, activation function, or dropout layers, for Word2Vec models. Because shorttext has been making use of keras layers for categorization, such advance in gensim in fact makes it a natural step to add an embedding layer of all neural networks provided in shorttext. How to do it? (See shorttext tutorial for “Deep Neural Networks with Word Embedding.”)

import shorttext
wvmodel = shorttext.utils.load_word2vec_model('/path/to/GoogleNews-vectors-negative300.bin.gz')   # load the pre-trained Word2Vec model
trainclassdict = shorttext.data.subjectkeywords()   # load an example data set

 

To train a model, you can do it the old way, or do it the new way with additional gensim function:

kmodel = shorttext.classifiers.frameworks.CNNWordEmbed(wvmodel=wvmodel, nb_labels=len(trainclassdict.keys()), vecsize=100, with_gensim=True)   # keras model, setting with_gensim=True
classifier = shorttext.classifiers.VarNNEmbeddedVecClassifier(wvmodel, with_gensim=True, vecsize=100)   # instantiate the classifier, setting with_gensim=True
classifier.train(trainclassdict, kmodel)

The parameters with_gensim in both CNNWordEmbed and VarNNEmbeddedVecClassifier are set to be False by default, because of backward compatibility. However, setting it to be True will enable it to use the new gensim Word2Vec layer.

These change in gensim and shorttext are the works mainly contributed by Chinmaya Pancholi, a very bright student at Indian Institute of Technology, Kharagpur, and a GSoC (Google Summer of Code) student in 2017. He revolutionized gensim by integrating scikit-learn and keras into gensim. He also used what he did in gensim to improve the pipelines of shorttext. He provided valuable technical suggestions. You can read his GSoC proposal, and his blog posts in RaRe Technologies, Inc. Chinmaya has been diligently mentored by Ivan Menshikh and Lev Konstantinovskiy of RaRe Technologies.

Maxent Classifier

Another important update is the adding of maximum entropy (maxent) classifier. (See the corresponding tutorial on “Maximum Entropy (MaxEnt) Classifier.”) I will devote a separate entry on the theory, but it is very easy to use it,

import shorttext
from shorttext.classifiers import MaxEntClassifier

classifier = MaxEntClassifier()

Use the NIHReports dataset as the example:

classdict = shorttext.data.nihreports()
classifier.train(classdict, nb_epochs=1000)

The classification is just like other classifiers provided by shorttext:

classifier.score('cancer immunology') # NCI tops the score
classifier.score('children health') # NIAID tops the score
classifier.score('Alzheimer disease and aging') # NIAID tops the score

Continue reading “Short Text Mining using Advanced Keras Layers and Maxent: shorttext 0.4.1”

Short Text Categorization using Deep Neural Networks and Word-Embedding Models

There are situations that we deal with short text, probably messy, without a lot of training data. In that case, we need external semantic information. Instead of using the conventional bag-of-words (BOW) model, we should employ word-embedding models, such as Word2Vec, GloVe etc.

Suppose we want to perform supervised learning, with three subjects, described by the following Python dictionary:

classdict={'mathematics': ['linear algebra',
           'topology',
           'algebra',
           'calculus',
           'variational calculus',
           'functional field',
           'real analysis',
           'complex analysis',
           'differential equation',
           'statistics',
           'statistical optimization',
           'probability',
           'stochastic calculus',
           'numerical analysis',
           'differential geometry'],
          'physics': ['renormalization',
           'classical mechanics',
           'quantum mechanics',
           'statistical mechanics',
           'functional field',
           'path integral',
           'quantum field theory',
           'electrodynamics',
           'condensed matter',
           'particle physics',
           'topological solitons',
           'astrophysics',
           'spontaneous symmetry breaking',
           'atomic molecular and optical physics',
           'quantum chaos'],
          'theology': ['divine providence',
           'soteriology',
           'anthropology',
           'pneumatology',
           'Christology',
           'Holy Trinity',
           'eschatology',
           'scripture',
           'ecclesiology',
           'predestination',
           'divine degree',
           'creedal confessionalism',
           'scholasticism',
           'prayer',
           'eucharist']}

And we implemented Word2Vec here. To add external information, we use a pre-trained Word2Vec model from Google, downloaded here. We can use it with Python package gensim. To load it, enter

from gensim.models import Word2Vec
wvmodel = Word2Vec.load_word2vec_format('<path-to>/GoogleNews-vectors-negative300.bin.gz', binary=True)

How do we represent a phrase in Word2Vec? How do we do the classification? Here I wrote two classes to do it.

Average

We can represent a sentence by summing the word-embedding representations of each word. The class, inside SumWord2VecClassification.py, is coded as follow:

from collections import defaultdict

import numpy as np
from nltk import word_tokenize
from scipy.spatial.distance import cosine

from utils import ModelNotTrainedException

class SumEmbeddedVecClassifier:
    def __init__(self, wvmodel, classdict, vecsize=300):
        self.wvmodel = wvmodel
        self.classdict = classdict
        self.vecsize = vecsize
        self.trained = False

    def train(self):
        self.addvec = defaultdict(lambda : np.zeros(self.vecsize))
        for classtype in self.classdict:
            for shorttext in self.classdict[classtype]:
                self.addvec[classtype] += self.shorttext_to_embedvec(shorttext)
            self.addvec[classtype] /= np.linalg.norm(self.addvec[classtype])
        self.addvec = dict(self.addvec)
        self.trained = True

    def shorttext_to_embedvec(self, shorttext):
        vec = np.zeros(self.vecsize)
        tokens = word_tokenize(shorttext)
        for token in tokens:
            if token in self.wvmodel:
                vec += self.wvmodel[token]
        norm = np.linalg.norm(vec)
        if norm!=0:
            vec /= np.linalg.norm(vec)
        return vec

    def score(self, shorttext):
        if not self.trained:
            raise ModelNotTrainedException()
        vec = self.shorttext_to_embedvec(shorttext)
        scoredict = {}
        for classtype in self.addvec:
            try:
                scoredict[classtype] = 1 - cosine(vec, self.addvec[classtype])
            except ValueError:
                scoredict[classtype] = np.nan
        return scoredict

Here the exception ModelNotTrainedException is just an exception raised if the model has not been trained yet, but scoring function was called by the user. (Codes listed in my Github repository.) The similarity will be calculated by cosine similarity.

Such an implementation is easy to understand and carry out. It is good enough for a lot of application. However, it has the problem that it does not take the relation between words or word order into account.

Convolutional Neural Network

To tackle the problem of word relations, we have to use deeper neural networks. Yoon Kim published a well cited paper regarding this in EMNLP in 2014, titled “Convolutional Neural Networks for Sentence Classification.” The model architecture is as follow: (taken from his paper)

cnn

Each word is represented by an embedded vector, but neighboring words are related through the convolutional matrix. And MaxPooling and a dense neural network were implemented afterwards. His paper involves multiple filters with variable window sizes / spatial extent, but for our cases of short phrases, I just use one window of size 2 (similar to dealing with bigram). While Kim implemented using Theano (see his Github repository), I implemented using keras with Theano backend. The codes, inside CNNEmbedVecClassification.py, are as follow:

import numpy as np
from keras.layers import Convolution1D, MaxPooling1D, Flatten, Dense
from keras.models import Sequential
from nltk import word_tokenize

from utils import ModelNotTrainedException

class CNNEmbeddedVecClassifier:
    def __init__(self,
                 wvmodel,
                 classdict,
                 n_gram,
                 vecsize=300,
                 nb_filters=1200,
                 maxlen=15):
        self.wvmodel = wvmodel
        self.classdict = classdict
        self.n_gram = n_gram
        self.vecsize = vecsize
        self.nb_filters = nb_filters
        self.maxlen = maxlen
        self.trained = False

    def convert_trainingdata_matrix(self):
        classlabels = self.classdict.keys()
        lblidx_dict = dict(zip(classlabels, range(len(classlabels))))

        # tokenize the words, and determine the word length
        phrases = []
        indices = []
        for label in classlabels:
            for shorttext in self.classdict[label]:
                category_bucket = [0]*len(classlabels)
                category_bucket[lblidx_dict[label]] = 1
                indices.append(category_bucket)
                phrases.append(word_tokenize(shorttext))

        # store embedded vectors
        train_embedvec = np.zeros(shape=(len(phrases), self.maxlen, self.vecsize))
        for i in range(len(phrases)):
            for j in range(min(self.maxlen, len(phrases[i]))):
                train_embedvec[i, j] = self.word_to_embedvec(phrases[i][j])
        indices = np.array(indices, dtype=np.int)

        return classlabels, train_embedvec, indices

    def train(self):
        # convert classdict to training input vectors
        self.classlabels, train_embedvec, indices = self.convert_trainingdata_matrix()

        # build the deep neural network model
        model = Sequential()
        model.add(Convolution1D(nb_filter=self.nb_filters,
                                filter_length=self.n_gram,
                                border_mode='valid',
                                activation='relu',
                                input_shape=(self.maxlen, self.vecsize)))
        model.add(MaxPooling1D(pool_length=self.maxlen-self.n_gram+1))
        model.add(Flatten())
        model.add(Dense(len(self.classlabels), activation='softmax'))
        model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

        # train the model
        model.fit(train_embedvec, indices)

        # flag switch
        self.model = model
        self.trained = True

    def word_to_embedvec(self, word):
        return self.wvmodel[word] if word in self.wvmodel else np.zeros(self.vecsize)

    def shorttext_to_matrix(self, shorttext):
        tokens = word_tokenize(shorttext)
        matrix = np.zeros((self.maxlen, self.vecsize))
        for i in range(min(self.maxlen, len(tokens))):
            matrix[i] = self.word_to_embedvec(tokens[i])
        return matrix

    def score(self, shorttext):
        if not self.trained:
            raise ModelNotTrainedException()

        # retrieve vector
        matrix = np.array([self.shorttext_to_matrix(shorttext)])

        # classification using the neural network
        predictions = self.model.predict(matrix)

        # wrangle output result
        scoredict = {}
        for idx, classlabel in zip(range(len(self.classlabels)), self.classlabels):
            scoredict[classlabel] = predictions[0][idx]
        return scoredict

The output is a vector of length equal to the number of class labels, 3 in our example. The elements of the output vector add up to one, indicating its score, and a nature of probability.

Evaluation

A simple cross-validation to the example data set does not tell a difference between the two algorithms:

rplot_acc1

However, we can test the algorithm with a few examples:

Example 1: “renormalization”

  • Average: {‘mathematics’: 0.54135105096749336, ‘physics’: 0.63665460856632494, ‘theology’: 0.31014049736087901}
  • CNN: {‘mathematics’: 0.093827009201049805, ‘physics’: 0.85451591014862061, ‘theology’: 0.051657050848007202}

As renormalization was a strong word in the training data, it gives an easy result. CNN can distinguish much more clearly.

Example 2: “salvation”

  • Average: {‘mathematics’: 0.14939650156482298, ‘physics’: 0.21692765541184023, ‘theology’: 0.5698233329716329}
  • CNN: {‘mathematics’: 0.012395491823554039, ‘physics’: 0.022725773975253105, ‘theology’: 0.96487873792648315}

“Salvation” is not found in the training data, but it is closely related to “soteriology,” which means the doctrine of salvation. So it correctly identifies it with theology.

Example 3: “coffee”

  • Average: {‘mathematics’: 0.096820211601723272, ‘physics’: 0.081567332119268032, ‘theology’: 0.15962682945135631}
  • CNN: {‘mathematics’: 0.27321341633796692, ‘physics’: 0.1950736939907074, ‘theology’: 0.53171288967132568}

Coffee is not related to all subjects. The first architecture correctly indicates the fact, but CNN, with its probabilistic nature, has to roughly equally distribute it (but not so well.)

The code can be found in my Github repository: stephenhky/PyShortTextCategorization. (This repository has been updated since this article was published. The link shows the version of the code when this appeared online.)

Continue reading “Short Text Categorization using Deep Neural Networks and Word-Embedding Models”

Word Embedding Algorithms

Embedding has been hot in recent years partly due to the success of Word2Vec, (see demo in my previous entry) although the idea has been around in academia for more than a decade. The idea is to transform a vector of integers into continuous, or embedded, representations. Keras, a Python package that implements neural network models (including the ANN, RNN, CNN etc.) by wrapping Theano or TensorFlow, implemented it, as shown in the example below (which converts a vector of 200 features into a continuous vector of 10):

from keras.layers import Embedding
from keras.models import Sequential

# define and compile the embedding model
model = Sequential()
model.add(Embedding(200, 10, input_length=1))
model.compile('rmsprop', 'mse')  # optimizer: rmsprop; loss function: mean-squared error

We can then convert any features from 0 to 199 into vectors of 20, as shown below:

import numpy as np

model.predict(np.array([10, 90, 151]))

It outputs:

array([[[ 0.02915354,  0.03084954, -0.04160764, -0.01752155, -0.00056815,
         -0.02512387, -0.02073313, -0.01154278, -0.00389587, -0.04596512]],

       [[ 0.02981793, -0.02618774,  0.04137352, -0.04249889,  0.00456919,
          0.04393572,  0.04139435,  0.04415271,  0.02636364, -0.04997493]],

       [[ 0.00947296, -0.01643104, -0.03241419, -0.01145032,  0.03437041,
          0.00386361, -0.03124221, -0.03837727, -0.04804075, -0.01442516]]])

Of course, one must not omit a similar algorithm called GloVe, developed by the Stanford NLP group. Their codes have been wrapped in both Python (package called glove) and R (library called text2vec).

Besides Word2Vec, there are other word embedding algorithms that try to complement Word2Vec, although many of them are more computationally costly. Previously, I introduced LDA2Vec in my previous entry, an algorithm that combines the locality of words and their global distribution in the corpus. And in fact, word embedding algorithms with a similar ideas are also invented by other scientists, as I have introduced in another entry.

However, there are word embedding algorithms coming out. Since most English words carry more than a single sense, different senses of a word might be best represented by different embedded vectors. Incorporating word sense disambiguation, a method called sense2vec has been introduced by Trask, Michalak, and Liu. (arXiv:1511.06388). Matthew Honnibal wrote a nice blog entry demonstrating its use.

There are also other related work, such as wang2vec that is more sensitive to word orders.

Big Bang Theory (Season 2, Episode 5): Euclid Alternative

DMV staff: Application?
Sheldon: I’m actually more or a theorist.

Note: feature image taken from Big Bang Theory (CBS).

Continue reading “Word Embedding Algorithms”

Create a free website or blog at WordPress.com.

Up ↑