Data Representation in Machine Learning

In implementing most of the machine learning algorithms, we represent each data point with a feature vector as the input. A vector is basically an array of numerics, or in physics, an object with magnitude and direction. How do we represent our business data in terms of a vector?

Primitive Feature Vector

Whether the data are measured observations, or images (pixels), free text, factors, or shapes, they can be categorized into four following types:

  1. Categorical data
  2. Binary data
  3. Numerical data
  4. Graphical data

The most primitive representation of a feature vector looks like this:

Screen Shot 2019-09-15 at 3.58.09 PM
A typical feature vector. (Source: https://www.researchgate.net/publication/318740904_Chat_Detection_in_an_Intelligent_Assistant_Combining_Task-oriented_and_Non-task-oriented_Spoken_Dialogue_Systems/figures?lo=1)

Numerical Data

Numerical data can be represented as individual elements above (like Tweet GRU, Query GRU), and I am not going to talk too much about it.

Categorical Data

However, for categorical data, how do we represent them? The first basic way is to use one-hot encoding:

Screen Shot 2019-09-15 at 4.02.51 PM
One-hot encoding of categorical data (Source: https://developers.google.com/machine-learning/data-prep/transform/transform-categorical)

For each type of categorical data, each category has an integer code. In the figure above, each color has a code (0 for red, 1 for orange etc.) and they will eventually be transformed to the feature vector on the right, with vector length being the total number of categories found in the data, and the element will be filled with 1 if it is of that category. This allows a natural way of dealing with missing data (with all elements 0) and multi-category (with multiple non-zeros).

In natural language processing, the bag-of-words model is often used to represent free-text data, which is the one-hot encoding above with words as the categories. It is a good way as long as the order of the words does not matter.

Binary Data

For binary data, it can be easily represented by one element, either 1 or 0.

Graphical Data

Graphical data are best represented in terms of graph Laplacian and adjacency matrix. Refer to a previous blog article for more information.

Shortcomings

A feature vector can be a concatenation of various features in terms of all these types except graphical data.

However, such representation that concatenates all the categorical, binary, and numerical fields has a lot of shortcomings:

  1. Data with different categories are often seen as orthogonal, i.e., perfectly dissimilar.  It ignores the correlation between different variables. However, it is a very big assumption.
  2. The weights of different fields are not considered.
  3. Sometimes if the numerical values are very large, it outweighs other categorical data in terms of influence in computation.
  4. Data are very sparse, costing a lot of memory waste and computing time.
  5. It is unknown whether some of the data are irrelevant.

Modifying Feature Vectors

In light of the shortcomings, to modify the feature factors, there are three main ways of dealing with this:

  1. Rescaling: rescaling all of some of the elements, or reweighing, to adjust the influence from different variables.
  2. Embedding: condensing the information into vectors of smaller lengths.
  3. Sparse coding: deliberately extend the vectors to a larger length.

Rescaling

Rescaling means rescaling all or some of the elements in the vectors. Usually there are two ways:

  1. Normalization: normalizing all the categories of one feature to having the sum of 1.
  2. Term frequency-inverse document frequency (tf-idf): weighing the elements so that the weights are heavier if the frequency is higher and it appears in relatively few documents or class labels.

Embedding

Embedding means condensing a sparse vector to a smaller vector. Many sparse elements disappear and information is encoded inside the elements. There are rich amount of work on this.

  1. Topic models: finding the topic models (latent Dirichlet allocation (LDA),  structural topic models (STM) etc.) and encode the vectors with topics instead;
  2. Global dimensionality reduction algorithms: reducing the dimensions by retaining the principal components of the vectors of all the data, e.g., principal component analysis (PCA), independent component analysis (ICA), multi-dimensional scaling (MDS) etc;
  3. Local dimensionality reduction algorithms: same as the global, but these are good for finding local patterns, where examples include t-Distributed Stochastic Neighbor Embedding (tSNE) and Uniform Manifold Approximation and Projection (UMAP);
  4. Representation learned from deep neural networks: embeddings learned from encoding using neural networks, such as auto-encoders, Word2Vec, FastText, BERT etc.
  5. Mixture Models: Gaussian mixture models (GMM), Dirichlet multinomial mixture (DMM) etc.
  6. Others: Tensor decomposition (Schmidt decomposition, Jennrich algorithm etc.), GloVe etc.

Sparse Coding

Sparse coding is good for finding basis vectors for dense vectors.

Continue reading “Data Representation in Machine Learning”

Summarizing Text Summarization

There are many tasks in natural language processing that are challenging. This blog entry is on text summarization, which briefly summarizes the survey article on this topic. (arXiv:1707.02268) The authors of the article defined the task to be

Automatic text summarization is the task of producing a concise and fluent summary while preserving key information content and overall meaning.

There are basically two approaches to this task:

  • extractive summarization: identifying important sections of the text, and extracting them; and
  • abstractive summarization: producing summary text in a new way.

Most algorithmic methods developed are of the extractive type, while most human writers summarize using abstractive approach. There are many methods in extractive approach, such as identifying given keywords, identifying sentences similar to the title, or wrangling the text at the beginning of the documents.

How do we instruct the machines to perform extractive summarization? The authors mentioned about two representations: topic and indicator. In topic representations, frequencies, tf-idf, latent semantic indexing (LSI), or topic models (such as latent Dirichlet allocation, LDA) are used. However, simply extracting these sentences out with these algorithms may not generate a readable summary. Employment of knowledge bases or considering contexts (from web search, e-mail conversation threads, scientific articles, author styles etc.) are useful.

In indicator representation, the authors mentioned the graph methods, inspired by PageRank. (see this) “Sentences form vertices of the graph and edges between the sentences indicate how similar the two sentences are.” And the key sentences are identified with ranking algorithms. Of course, machine learning methods can be used too.

Evaluation on the performance on text summarization is difficult. Human evaluation is unavoidable, but with manual approaches, some statistics can be calculated, such as ROUGE.

Continue reading “Summarizing Text Summarization”

Useful Python Packages

python
(Taken from http://latticeqcd.org/pythonorg/static/images/antigravity.png, adapted from http://xkcd.com/353/)

Python is the basic programming languages if one wants to work on data nowadays. Its popularity comes with its intuitive syntax, its support of several programming paradigms, and the package numpy (Numerical Python). Yes, if you asked which package is a “must-have” outside the standard Python packages, I would certainly name numpy.

Let me list some useful packages that I have found useful:

  1. numpy: Numerical Python. Its basic data type is ndarray, which acts like a vector with vectorized calculation support. It makes Python to perform matrix calculation efficiently like MATLAB and Octave. It supports a lot of commonly used linear algebraic algorithms, such as eigenvalue problems, SVD etc. It is the basic of a lot of other Python packages that perform heavy numerical computation. It is such an important package that, in some operating systems, numpy comes with Python as well.
  2. scipy: Scientific Python. It needs numpy, but it supports also sparse matrices, special functions, statistics, numerical integration…
  3. matplotlib: Graph plotting.
  4. scikit-learn: machine learning library. It contains a number of supervised and unsupervised learning algorithms.
  5. nltk: natural language processing. It provides not only basic tools like stemmers, lemmatizers, but also some algorithms like maximum entropy, tf-idf vectorizer etc. It provides a few corpuses, and supports WordNet dictionary.
  6. gensim: another useful natural language processing package with an emphasis on topic modeling. It mainly supports Word2Vec, latent semantic indexing (LSI), and latent Dirichlet allocation (LDA). It is convenient to construct term-document matrices, and convert them to matrices in numpy or scipy.
  7. networkx: a package that supports both undirected and directed graphs. It provides basic algorithms used in graphs.
  8. sympy: Symbolic Python. I am not good at this package, but I know mathics and SageMath are both based on it.
  9. pandas: it supports data frame handling like R. (I have not used this package as I am a heavy R user.)

Of course, if you are a numerical developer, to save you a good life, install Anaconda.

There are some other packages that are useful, such as PyCluster (clustering), xlrd (Excel files read/write), PyGame (writing games)… But since I have not used them, I would rather mention it in this last paragraph, not to endorse but avoid devaluing it.

Don’t forget to type in your IPython Notebook:

import antigravity

Continue reading “Useful Python Packages”

Blog at WordPress.com.

Up ↑