Probabilistic Theory of Word Embeddings: GloVe

The topic of word embedding algorithms has been one of the interests of this blog, as in this entry, with Word2Vec [Mikilov et. al. 2013] as one of the main examples. It is a great tool for text mining, (for example, see [Czerny 2015],) as it reduces the dimensions needed (compared to bag-of-words model). As an algorithm borrowed from computer vision, a lot of these algorithms use deep learning methods to train the model, while it was not exactly sure why it works. Despite that, there are many articles talking about how to train the model. [Goldberg & Levy 2014, Rong 2014 etc.] Addition and subtraction of the word vectors show amazing relationships that carry semantic values, as I have shown in my previous blog entry. [Ho 2015]

However, Tomas Mikolov is no longer working in Google, making the development of this algorithm discontinued. As a follow-up of their work, Stanford NLP group later proposed a model, called GloVe (Global Vectors), that embeds word vectors using probabilistic methods. [Pennington, Socher & Manning 2014] It can be implemented in the package glove-python in python, and text2vec in R (or see their CRAN post).  Their paper is neatly written, and a highly recommended read.

To explain the theory of GloVe, we start with some basic probabilistic picture in basic natural language processing (NLP). We suppose the relation between the words occur in certain text windows within a corpus, but the details are not important here. Assume that i, j, and k are three words, and the conditional probability P_{ik} is defined as

P_{ij} = P(j | i) = \frac{X_{ij}}{X_i},

where X‘s are the counts, and similarly for P_{jk}. And we are interested in the following ratio:

F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}.

The tilde means “context,” but we will later assume it is also a word. Citing the example from their paper, take i as ice, and j as steam. if k is solid, then the ratio is expected to be large; or if k is gas, then it is expected to be low. But if k is water, which are related to both, or fashion, which is related to none, then the ratio is expected to be approximately 1.

And the addition and subtraction in Word2Vec is similar to this. We want the ratio to be like the subtraction as in Word2Vec (and multiplication as in addition), then we should modify the function F such that,

F(w_i - w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}.

On the other hand, the input arguments of F are vectors, but the output is a scalar. We avoid the issue by making the input argument as a dot product,

F( (w_i - w_j)^T \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}.

In NLP, the word-word co-occurrence matrices are symmetric, and our function F should also be invariant under switching the labeling. We first require F is be a homomorphism,

F((w_i - w_j)^T \tilde{w}_k) = \frac{F(w_i^T \tilde{w}_k) }{ F(w_j^T \tilde{w}_k)},

where we define,

F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}.

It is clear that F is an exponential function, but to ensure symmetry, we further define:

w_i^T \tilde{w}_k + b_i + \tilde{b}_k = \log X_{ik}.

As a result of this equation, the authors defined the following cost function to optimize for GloVe model:

J = \sum_{i, j=1}^V f(X_{ij}) \left( w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ik} \right)^2,

where w_j, \tilde{w}_j, b_i, and \tilde{b}_j are parameters to learn. f(x) is a weighting function. (Refer the details to the paper.) [Pennington, Socher & Manning 2014]

As Radim Řehůřek said in his blog entry, [Řehůřek 2014] it is a neat paper, but their evaluation is crappy.

This theory explained why certain similar relations can be achieved, such as Paris – France is roughly equal to Beijing – China, as both can be transformed to the ratio in the definition of F above.

It is a neat paper, as it employs optimization theory and probability theory, without any dark box deep learning.

Continue reading “Probabilistic Theory of Word Embeddings: GloVe”

Toying with Word2Vec

One fascinating application of deep learning is the training of a model that outputs vectors representing words. A project written in Google, named Word2Vec, is one of the best tools regarding this. The vector representation captures the word contexts and relationships among words. This tool has been changing the landscape of natural language processing (NLP).

Let’s have some demonstration. To use Word2Vec in Python, you need to have the package gensim installed. (Installation instruction: here) And you have to download a trained model (GoogleNews-vectors-negative300.bin.gz), which is 3.6 GB big!! When you get into a Python shell (e.g., IPython), type

from gensim.models.word2vec import Word2Vec
model = Word2Vec.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)

This model enables the user to extract vector representation of length 300 of an English word. So what is so special about this vector representation from the traditional bag-of-words representation? First, the representation is standard. Once trained, we can use it in future training or testing dataset. Second, it captures the context of the word in a way that the algebraic operation of these vectors has meanings.

Here I give 5 examples.

A Juvenile Cat

What is a juvenile cat? We know that a juvenile dog is a puppy. Then we can get it by carry out the algebraic calculation \text{puppy} - \text{dog} + \text{cat} by running

model.most_similar(positive=['puppy', 'cat'], negative=['dog'], topn=5)

This outputs:

[(u'kitten', 0.7634989619255066),
(u'puppies', 0.7110899686813354),
(u'pup', 0.6929495334625244),
(u'kittens', 0.6888389587402344),
(u'cats', 0.6796488761901855)]

which indicates that “kitten” is the answer (correctly!) The numbers are similarities of these words with the vector representation  \text{puppy} - \text{dog} + \text{cat} in descending order. You can verify it by calculating the cosine distance:

from scipy.spatial import distance
print (1-distance.cosine(model['kitten'], model['puppy']+model['cat']-model['dog']))

which outputs 0.763498957413.

Mogu, my cat, three years ago when she was still a kitten
Mogu, my cat, three years ago when she was still a kitten

This demonstration shows that in the model, \text{puppy}-\text{dog} and \text{kitten}-\text{cat} are of similar semantic relations.

Capital of Taiwan

Where is the capital of Taiwan? We can find it if we know the capital of another country. For example, we know that Beijing is the capital of China. Then we can run the following:

model.most_similar(positive=['Beijing', 'Taiwan'], negative=['China'], topn=5)

which outputs

[(u'Taipei', 0.7866502404212952),
(u'Taiwanese', 0.6805002093315125),
(u'Kaohsiung', 0.6034111976623535),
(u'Chen', 0.5905819535255432),
(u'Seoul', 0.5865181684494019)]

Obviously, the answer is “Taipei.” And interestingly, the model sees Taiwan in the same footing of China!

Taipei (taken from Airasia: http://www.airasia.com/mo/en/destinations/taipei.page)

Past Participle of “eat”

We can extract grammatical information too. We know that the past participle of “go” is “gone”. With this, we can find that of “eat” by running:

model.most_similar(positive=[‘gone’, ‘eat’], negative=[‘go’], topn=5)

which outputs:

[(u'eaten', 0.7462186217308044),
(u'eating', 0.6516293287277222),
(u'ate', 0.6457351446151733),
(u'overeaten', 0.5853317975997925),
(u'eats', 0.5830586552619934)]

Capital of the State of Maryland

However, this model does not always work. If it can find the capital of Taiwan, can it find those for any states in the United States? We know that the capital of California is Sacramento. How about Maryland? Let’s run:

model.most_similar(positive=['Sacramento', 'Maryland'], negative=['California'], topn=5)

which sadly outputs:

[(u'Towson', 0.7032245397567749),
(u'Baltimore', 0.6951349973678589),
(u'Hagerstown', 0.6367553472518921),
(u'Anne_Arundel', 0.5931429266929626),
(u'Oxon_Hill', 0.5879474878311157)]

But the correct answer should be Annapolis!

Downtown Annapolis (taken from Wikipedia)

Blue crabs (lunch in Cantler's Riverside Inn, Annapolis, MD)
Blue crabs (lunch in Cantler’s Riverside Inn, Annapolis, MD)

More About Word2Vec

Word2Vec was developed by Tomáš Mikolov. He previously worked for Microsoft Research. However, he switched to Google, and published a few influential works on Word2Vec. [Mikolov, Yih, Zweig 2013] [Mikolov, Sutskever, Chen, Corrado, Dean 2013] [Mikolov, Chen, Corrado, Dean 2013] Their conference paper in 2013 can be found on arXiv. He later published a follow-up work on a package called Doc2Vec that considers phrases. [Le, Mikolov 2014]

Earlier this year, I listened to a talk in DCNLP meetup spoken by Michael Czerny on his award-winning blog entry titled “Modern Methods for Sentiment Analysis.” He applied the vector representations of words by Word2Vec to perform sentiment analysis, assuming that similar sentiments cluster together in the vector space. (He took averages of the vectors in tweets to extract emotions.) [Czerny 2015] I highly recommend you to read his blog entry. On the other hand, Xin Rong wrote an explanation about how Word2Vec works too. [Rong 2014]

There seems to be no progress on the project Word2Vec anymore as Tomáš Mikolov no longer works in Google. However, the Stanford NLP Group recognized that Word2Vec captures the relations between words in their vector representation. They worked on a similar project, called GloVe (Global Vectors), which tackles the problem with matrix factorization. [Pennington, Socher, Manning 2014] Radim Řehůřek did some analysis comparing Word2Vec and GloVe. [Řehůřek 2014] GloVe can be implemented in Python too.

Continue reading “Toying with Word2Vec”

Blog at WordPress.com.

Up ↑