One fascinating application of deep learning is the training of a model that outputs vectors representing words. A project written in Google, named Word2Vec, is one of the best tools regarding this. The vector representation captures the word contexts and relationships among words. This tool has been changing the landscape of natural language processing (NLP).

Let’s have some demonstration. To use Word2Vec in Python, you need to have the package gensim installed. (Installation instruction: here) And you have to download a trained model (GoogleNews-vectors-negative300.bin.gz), which is 3.6 GB big!! When you get into a Python shell (e.g., IPython), type

from gensim.models.word2vec import Word2Vec


This model enables the user to extract vector representation of length 300 of an English word. So what is so special about this vector representation from the traditional bag-of-words representation? First, the representation is standard. Once trained, we can use it in future training or testing dataset. Second, it captures the context of the word in a way that the algebraic operation of these vectors has meanings.

Here I give 5 examples.

A Juvenile Cat

What is a juvenile cat? We know that a juvenile dog is a puppy. Then we can get it by carry out the algebraic calculation $\text{puppy} - \text{dog} + \text{cat}$ by running

model.most_similar(positive=['puppy', 'cat'], negative=['dog'], topn=5)


This outputs:

[(u'kitten', 0.7634989619255066),
(u'puppies', 0.7110899686813354),
(u'pup', 0.6929495334625244),
(u'kittens', 0.6888389587402344),
(u'cats', 0.6796488761901855)]


which indicates that “kitten” is the answer (correctly!) The numbers are similarities of these words with the vector representation $\text{puppy} - \text{dog} + \text{cat}$ in descending order. You can verify it by calculating the cosine distance:

from scipy.spatial import distance
print (1-distance.cosine(model['kitten'], model['puppy']+model['cat']-model['dog']))


which outputs 0.763498957413. Mogu, my cat, three years ago when she was still a kitten

This demonstration shows that in the model, $\text{puppy}-\text{dog}$ and $\text{kitten}-\text{cat}$ are of similar semantic relations.

Capital of Taiwan

Where is the capital of Taiwan? We can find it if we know the capital of another country. For example, we know that Beijing is the capital of China. Then we can run the following:

model.most_similar(positive=['Beijing', 'Taiwan'], negative=['China'], topn=5)


which outputs

[(u'Taipei', 0.7866502404212952),
(u'Taiwanese', 0.6805002093315125),
(u'Kaohsiung', 0.6034111976623535),
(u'Chen', 0.5905819535255432),
(u'Seoul', 0.5865181684494019)]


Obviously, the answer is “Taipei.” And interestingly, the model sees Taiwan in the same footing of China! Taipei (taken from Airasia: http://www.airasia.com/mo/en/destinations/taipei.page)

Past Participle of “eat”

We can extract grammatical information too. We know that the past participle of “go” is “gone”. With this, we can find that of “eat” by running:

model.most_similar(positive=[‘gone’, ‘eat’], negative=[‘go’], topn=5)

which outputs:

[(u'eaten', 0.7462186217308044),
(u'eating', 0.6516293287277222),
(u'ate', 0.6457351446151733),
(u'overeaten', 0.5853317975997925),
(u'eats', 0.5830586552619934)]


Capital of the State of Maryland

However, this model does not always work. If it can find the capital of Taiwan, can it find those for any states in the United States? We know that the capital of California is Sacramento. How about Maryland? Let’s run:

model.most_similar(positive=['Sacramento', 'Maryland'], negative=['California'], topn=5)


[(u'Towson', 0.7032245397567749),
(u'Baltimore', 0.6951349973678589),
(u'Hagerstown', 0.6367553472518921),
(u'Anne_Arundel', 0.5931429266929626),
(u'Oxon_Hill', 0.5879474878311157)]


But the correct answer should be Annapolis! Downtown Annapolis (taken from Wikipedia)